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TerascaleTerascale Accelerator ModelingAccelerator Modeling

q Three components in the Accelerator SciDAC Project.
§ Beam Systems Simulations (R. Ryne, LBNL).
§ Electromagnetic Systems Simulations (K. Ko, SLAC).
§ Advanced Accelerator Systems Simulations (W. Mori, UCLA).

q One of the SciDAC goals is to encourage interactions and 
collaborations between application scientists and applied 
mathematicians/computer scientists to advance large-scale 
high-performance simulations.
§ Lots of opportunities in this accelerator project.
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SciDACSciDAC ISIC’sISIC’s and SAPPand SAPP

q SciDAC Integrated Software Infrastructure Centers (ISIC’s) 
provide the expertise in applied math and computer science.
§ APDEC – Algorithmic and Software Framework for Applied PDEs.
§ TOPS – Terascale Optimal PDE Simulations.
§ TSTT - Terascale Simulation Tools and Technology.
§ CCTTSS – Component Technology for Terascale Simulation 

Software.
§ PERC – Performance Evaluation Research.

q SciDAC Scientific Application Pilot Program (SAPP) provides 
the linkage between ISIC’s and applications (in most cases).
§ BNL, LANL, LBNL, Stanford, UC Davis.
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ISIC and SAPP ActivitiesISIC and SAPP Activities

q Linear Algebra – large-scale sparse eigensolvers, sparse linear 
equations solvers (LBNL, Stanford, SLAC).

q Load Balancing (LBNL, SLAC).
q Adaptive Mesh Refinements – particle-in-cell simulations and 

advanced accelerators (LBNL).
q Meshing – long-term stability in unstructured finite element 

meshes (SLAC, SNL) and unstructured mesh refinement (RPI).
q Visualization - visualization & animation of large datasets (UC 

Davis, SLAC, LBNL).
q Statistical Methods (LANL, LBNL).
q Wake Field Modeling – modeling interaction of particle beams 

with wake fields in high-intensity accelerators (BNL).
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OutlineOutline

q Electromagnetic Systems
§ Omega3P
§ Tau3P
§ Visualization

q Beam Systems and Advanced Accelerators
§ Visualization
§ Particle-in-cell simulations
§ Gas jet calculations
§ Statistical methods
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CS/AM Efforts Related To Omega3PCS/AM Efforts Related To Omega3P

q Omega3P calculates cavity mode frequencies and field vectors.

§ Large-scale Eigenvalue/Eigenvector Calculations.
• G. Golub, Y. Sun (Stanford) – SAPP.
• P. Husbands, S. Li, E. Ng, C. Yang (LBNL) – TOPS & SAPP.

§ Parallel Adaptive Mesh Refinement.
• I. Malik (Stanford), Z. Li (SLAC) – Accelerator Project.
• Y. Luo, M. Shephard (RPI) – TSTT.
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LargeLarge--scale scale EigenvalueEigenvalue CalculationsCalculations

q Calculates cavity mode frequencies and field vectors.
§ Finite element discretization of Maxwell’s equations gives rise to a 

generalized eigenvalue problem.
§ When losses in cavities are considered, eigenvalue problems 

become complex (and symmetric) – work in progress.
§ LBNL, Stanford collaboration.

• Parry Husbands, Sherry Li, Esmond Ng, Chao Yang 
(LBNL/TOPS+SAPP).

• Gene Golub, Yong Sun (Stanford/Accelerator+SAPP).

Omega3P model of a 47-cell section of the 206-
cell Next Linear Collider accelerator structure

Individual cells used 
in accelerating 
structure
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interior eigenvalues

Spectral Distribution

LargeLarge--scale scale EigenvalueEigenvalue CalculationsCalculations

q Need to compute accurately 
interior eigenvalues (often tightly 
clustered) that are relatively 
small in magnitude.

q Depending on number of cells (up 
to hundreds) and the 
discretization, matrices can 
become very large (1M – 100M) 
and sparse.

q Problems will eventually be 
complex, symmetric.

q Omega3P has solved a 82-cell 
structure with 22M DOF’s (with 
no losses).
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Two Two EigensolversEigensolvers

q Inexact shift-invert (to get an approximate solution) + Newton-type 
iterations (to refine the solution) – Golub, Sun (Stanford).
§ Investigated and implemented different improvements for inexact shift-

invert:  block algorithm, deflation techniques, and restart strategies.
§ Started to investigate preconditioning techniques for the Newton-type 

iterations.
§ Potentially can handle very large problems.

q Exact shift-invert – Husbands, Li, Ng, Yang (LBNL).
§ Require complete factorizations of (sparse) matrices.
§ Make possible by exploiting work funded by TOPS – SuperLU, a high-

performance scalable parallel sparse linear equations solver.
§ Combine SuperLU with PARPACK to obtain parallel implementation of 

exact shift-invert Lanczos eigensolver.
§ Enable accurate calculation of eigenvalues, allow verification of other 

eigensolvers, and provide a baseline for comparisons.
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TOPS Contribution TOPS Contribution -- SuperLUSuperLU

q SuperLU: direct solution of sparse linear system Ax = b.
§ Efficient and portable implementations on modern computer 

architectures.
§ Support real and complex matrices, fill-reducing orderings, 

equilibration, numerical pivoting, condition estimation, iterative 
refinement, and error bounds.
§ New developments/improvements are funded by TOPS and 

motivated by the Omega3P application.
• Accommodate distributed input matrices (nearly done).

Ø Symbolic factorization still sequential but reduction in memory used.
• Improve triangular solution routine (in progress).

Ø Improve management of buffers used for non-blocking operations to make 
it friendlier to MPI implementations.

Ø Use partial inversion to improve parallelism in the substitution process.
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LargeLarge--scale scale EigenvalueEigenvalue CalculationsCalculations

q The good news is that both the exact shift-invert and inexact 
shift-invert solvers produce the same eigenvalues.

q The exact shift-invert solver and inexact shift-invert solver 
are complementary.

q Exact-shift invert is a serious contender because of memory 
availability.
§ Integrated as a run-time option in Omega3P.
§ More comparisons using larger problems in progress.

q The exact shift-invert solver provides a quick solution to the 
sparse complex symmetric eigenvalue problems.
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Future TOPS ContributionsFuture TOPS Contributions

q SuperLU:
§ Improve the interface with PARPACK.
§ Parallelize the remainder of the symbolic factorization routine in 

SuperLU – guaranteeing memory scalability, and making the exact 
shift-invert algorithm much more powerful.
§ Fill-reducing orderings of the matrix.

q Need to improve the Newton-type iteration for the correction 
step, as well as the Jacobi-Davidson algorithm:
§ SuperLU has its limitations:  memory bottleneck.
§ Future plans include joint work (LBNL+Stanford) on the correction 

step.
• Iterative solvers.
• Preconditioning techniques.
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Results on NERSC SPResults on NERSC SP

48

32

p

12,477.8719,884,3874,859.8dds47 linear 
(16 eigenvalues)

7,430.2867,709,8514,413.9dds15 linear 
(14 eigenvalues)

Time
(Hybrid)

Nonzeros in
L+U-I

Time 
(ESIL)

Problem

dds47 matrix:
n = 1,323,019
nnz = 20,127,775
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Adaptive Mesh Refinement in Omega3PAdaptive Mesh Refinement in Omega3P

q Adaptive mesh refinement is highly desirable to improve 
accuracy & optimize compute resources.

Entire 206 cell 2D Structure on 206 processors

Parallel AMR in 2D with Omega2P straightforward

Mesh level 1

Mesh level 2

RDDS 12 cell stack on 10 processorsMesh level 1 Mesh level 2

Parallel AMR in 3D with Omega3P is a challenge
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Omega3P Optimization StrategyOmega3P Optimization Strategy

q Implement h-p adaptive refinement. 
q Start with coarse grid solution (h=p=E=1), devise refinement 

strategy to improve accuracy in an optimal fashion.
q Impose error metric used in Omega2P.

q Use RPI framework to deal with mesh partitioning and load 
balancing issues.

1 (Lanczos)1 (Linear)1

2 (Jacobi-Davison)2 (Quadratic)2
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Parallel AMR in Omega3PParallel AMR in Omega3P

q Collaborate with Y. Luo, M. Shephard (RPI/TSTT).

Solid
Model

SCOREC
Mesh Generator

Initial
Mesh

SCOREC
Mesh Modification

Stanford
SLAC

New 
Mesh

Error Information
(Indicator/Estimator)

Provided by Stanford
Provided by RPI SCOREC
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CS/AM Efforts Related To Tau3PCS/AM Efforts Related To Tau3P

q Tau3P is a time domain solver for the electric and magnetic 
fields.

§ CAD Model/Mesh Generation.
• T. Tautges (SNL) – TSTT.

§ Improvement studies for the DSI scheme.
• B. Henshaw (LLNL) – TSTT.

§ Quality metrics to identify meshes with improved stability.
• P. Knupp (SNL) – TSTT.
• N. Folwell (SLAC) – Accelerator Project.

§ Improving parallel performance.
• A. Pinar (LBNL) – TOPS; K. Devine (SNL).
• A. Guetz, M. Wolf (SLAC) – Accelerator Project.
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CAD/Meshing for PEPCAD/Meshing for PEP--II IR II IR 

q Fixing CAD model and optimizing Tau3P primary/dual mesh.
§ T. Tautges (SNL/TSTT).

Worst deviation
= 41º

Worst deviation
< .001º
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Tau3P Stability vs. Mesh QualityTau3P Stability vs. Mesh Quality

q Background
§ Tau3P uses a discretization scheme that is unstable

on non-orthogonal unstructured meshes. 
§ To obtain useful computations, Tau3P calculations are

stabilized using a time-domain filter. 
§ Even with filtering, sometimes runs become unstable before the 

desired number of time-steps is completed.
§ Good mesh quality can increase the number of stable time-steps in 

a given simulation.
§ Many hours are spent trying to create meshes with good quality. 

This creates a bottleneck in the process.

Higher Stability
Lower Stablity
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Tau3P Stability vs. Mesh QualityTau3P Stability vs. Mesh Quality

q Strategic Approach – Stabilize the Code
§ B. Henshaw (LLNL/TSTT).

• The DSI (Discrete Surface Integral) scheme in Tau3P exhibits 
instabilities for long time integration on non-orthogonal grids that 
result in non-self-adjoint operator.  Explored 3 possible ways to 
develop a stable algorithm:

1. Spatial artificial dissipation – Initial numerical experiments indicate that 
a sixth-order dissipation is very effective with very little damping of the 
energy over long times.

2. Dissipative time integration – Studied the ABS3 (Adams-Bashforth
Staggered-Grid Order-3) scheme but found it not suitable even though it 
improves the convergence properties.

3. A symmetric scheme – Developed 2nd-order and fourth-order accurate 
approximations that are self-adjoint but only for grids that are logically 
rectangular, not for general unstructured meshes.  The fourth-order 
approximation could be used in the context of overlapping grids to give an 
accurate and very efficient solver.
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Tau3P Stability vs. Mesh QualityTau3P Stability vs. Mesh Quality

q Tactical Approach:  Improve Mesh Quality

§ P. Knupp (SNL/TSTT), N. Folwell (SLAC).
§ It has long been observed qualitatively that the number of time-

steps one can take before going unstable depends strongly on mesh 
properties.
§ How can we create higher quality meshes that will allow a greate

number of time steps before the onset of instability?
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Tau3P Stability vs. Mesh QualityTau3P Stability vs. Mesh Quality

q Diagnosis of the Problem: 

§ Identify specific mesh quality metrics that impact the number of
time steps allowed.
§ Determine corresponding critical thresholds for the mesh quality

metrics.
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Tau3P Stability vs. Mesh QualityTau3P Stability vs. Mesh Quality

q Empirical Approach (completed): 

§ Created 25 different meshes on Pillbox 
§ Ran the same Tau3P problem on each to get a 

single number-of-time steps vs. mesh quality 
data point.
§ Plotted number of time-steps vs. various 

mesh quality metrics. (Result is a scatter 
plot.) 
§ Most metrics showed low linear correlations, 

but 3 were  strong: Edge-length (MPES), 
Shape (MPCN), and Smoothness (PSM). 

Strongly Correlated

Weakly Correlated
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Tau3P Stability vs. Mesh QualityTau3P Stability vs. Mesh Quality

q Remedy (FY03):

§ Numerically optimize existing meshes via node-movement strategy 
(smoothing),
§ Use highly correlated quality metrics (MPCN, MPES, and PSM) to 

guide optimization,
§ Use Mesquite (Mesh Quality Improvement) Toolkit (TSTT),
§ Demonstrate that improved meshes allow larger number of time-

steps.
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Load Balancing Issues in Tau3PLoad Balancing Issues in Tau3P

q Load balancing problem inTau3P Modeling of NLC Input Coupler.
§ The use of unstructured meshes lead to matrices for

which nonzero entries are not evenly distributed.
§ Makes work assignment and load balancing

difficult in a parallel setting.
§ SLAC’s Tau3P currently uses ParMetis

to partition the domain to minimize
communication – not a very satisfactory solution.

Matrix Distribution over 14 cpu’sMatrix Sparsity Parallel Speedup
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Load Balancing Issues in Tau3PLoad Balancing Issues in Tau3P

q Collaboration between LBNL and SLAC (just started).
§ Ali Pinar (LBNL/TOPS), Karen Devine (SNL).
§ Adam Guetz, Michael Wolf (SLAC).
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Visualization for Electromagnetic SystemsVisualization for Electromagnetic Systems

q G. Schussman, K. Ma (UC Davis) – SAPP.

q Extreme dense field lines.
§ One hundred thousands to millions of 

electron paths to visualize.
§ Limited resolution of the display.
§ Abstraction of the field complexity.

q User interfaces and interaction to 
reveal structures.
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Interactive Visualization of Electromagnetic FieldsInteractive Visualization of Electromagnetic Fields

q Self Orienting Surface (SOS) - New 
representation for 3D field lines through 
hardware accelerated bump mapping.
§ Scalable & excellent texture support.
§ Fast transfer and low memory requirement.
§ Perceptually correct depth cuing.

1.28
(0 MB ! )

0.1240.019SOS with
Hardware Bump Map

1.82
(628 MB ! )

0.1730.027Polygonal tubes display 
list

5.540.5120.077SOS, Finely tessellated 
(No HW Bump Map)

38.23.0010.445Polygonal tubes
no display list

10k lines800 lines150 lines

SOS Performance 
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Visualizing Particles on Unstructured GridsVisualizing Particles on Unstructured Grids

q Advanced illumination and interactive methods used for 
displaying particles and fields simultaneously to locate regions
of interest, and multi-resolution techniques deployed to 
overcome performance bottlenecks.

Bunch propagation in Ptrack3D/Omega3P
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Visualizing Dark Current SimulationVisualizing Dark Current Simulation

q Simultaneous rendering of field and particle data to study dark 
current generation and capture (100’s of GB).

Surface electric field magnitude, 
field vectors & particles

Surface electric field magnitude, 
& particle trajectories
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Animation of Dynamic ProcessesAnimation of Dynamic Processes
Simulating field and secondary emissions in a 5-cell TW-structure. 
Primary (green) & secondary (red) particles with surface E fields.
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Visualization for Beam DynamicsVisualization for Beam Dynamics

q K. Ma (UC Davis) – SAPP.

q Modeling a large number of charged particles as they move 
through the accelerator and respond to various forces.
§ Millions to billions of particles.
§ Multidimensional (coordinates + momenta).
§ Result in huge datasets.
§ Current approaches inadequate.

(x, (x, PxPx, y)                             (x, , y)                             (x, PxPx, z)                              (, z)                              (PxPx, , PyPy, , PzPz))
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New Hybrid Rendering AlgorithmsNew Hybrid Rendering Algorithms

q Texture-based volume rendering for regions of low 
interest/detail.

q Point-based rendering for regions of high interest/detail.
q The hybrid rendering approach allows interactive exploration 

of the region of high interest.
q Parallel preprocessing and parallel

rendering must be used for billion
points or more cases.

q Reduce storage requirements.
§ Faster data transport.
§ Better utilization of the video memory.
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CS/AM Efforts Related To Beam Dynamics CS/AM Efforts Related To Beam Dynamics 

q AMR for particle-in-cell.
§ Goal:  Develop a flexible suite 

of fast solvers for PIC codes, 
based on ADPEC’s Chombo
framework for block-structured 
adaptive mesh refinement 
(AMR).

• Block-structured adaptive 
mesh solvers.

• Fast infinite-domain boundary 
conditions.

• Flexible specification of 
interaction  between grid and 
particle data.

• Accurate representation of 
complex geometries.
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AMR for PICAMR for PIC

§ Progress to date:
• Developed node-centered block-structured AMR codes for Poisson’s 

equation, for either rectangular domains or complex geometries.
• Implemented standard PIC interpolation of charges to grid, electric 

fields to particles on AMR grid.
• Single-grid (non-adaptive) Chombo solution for a standard 

MaryLIE/IMPACT test case produces essentially identical results.
• Multiple-grid (adaptive) Chombo solution is under development.

§ Plans:
• Couple Chombo AMR / PIC solver to MaryLie / IMPACT code, other 

PIC codes (e.g. QuickPIC).  Verification and validation, performance 
tuning.

• Implement fast infinite-domain boundary condition package.
• Begin development of analysis-based minimum-communication solver.
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CS/AM Efforts Related to Advanced AcceleratorsCS/AM Efforts Related to Advanced Accelerators

q Embedded boundary methods for gas jet calculations.
§ Goal:  Simulation of gas jets for plasma-wakefield accelerators.

• High-resolution semi-implicit finite difference approximations of 
time-dependent compressible viscous flows.

• Embedded boundary representation of complex geometries.
• Block-structured adaptive mesh refinement.
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AMR for Gas Jet CalculationsAMR for Gas Jet Calculations

§ Progress:
• Developed grid-generation tools based on Cart3D package of 

Aftosmis, Berger, and Melton.
• Developed embedded-boundary AMR solver for time dependent 

inviscid flows. 
§ Plans:

• Complete development of AMR viscous solvers, semi-implicit 
compressible code.

• Comparisons to gas-jet experiments.
• Coupling to laser energy deposition.
• Develop volume-of-fluid front tracking capability to represent 

boundary between jet and the vacuum more accurately.
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Collaborations with APDECCollaborations with APDEC

q Collaborators:
§ AMR / PIC :

• APDEC:  Phillip Colella, Peter McCorquodale, David Serafini (LBNL). 
• LBNL LDRD: Alex Friedman, David Grote, Jean-Luc Vay (LBNL).
• Beam Dynamics: Andreas Adelmann, Robert Ryne (LBNL).

§ Gas Jet : 
• APDEC:  Phillip Colella, Daniel Graves, Terry Ligocki (LBNL); Anders 

Petersson (LLNL); Marsha Berger (NYU).
• Advanced Accelerators: Eric Esarey, Wim Leemans (LBNL).  
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Statistical MethodsStatistical Methods

q Collaborators:
§ Dave Higdon, Kathy Campbell (LANL/SAPP).
§ Rob Ryne (LBNL).

q Combining simulations and experimental data for forecasting, 
calibration, and uncertainty quantification.

q Applications: 
§ characterizing the initial beam configuration; tuning magnetic 

settings; assessing value of experimental data.
q Statistical strategy/methodology includes:
§ Bayesian image analysis; dimension reduction; response surface 

modeling; experimental design; trading off between a few high 
fidelity simulations and many low fidelity simulations.
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Using CT Data to Characterize Initial Beam ConfigurationUsing CT Data to Characterize Initial Beam Configuration

q Markov random 
field/wavelet prior 
model for initial beam.

q Conditioning on data and 
using many simulation 
runs yields a posterior 
distribution that 
describes the input 
beam.

q Prior information 
regarding the initial 
beam can be 
incorporated.
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Supporting Computational InfrastructureSupporting Computational Infrastructure

q LBNL/NERSC
§ Time allocation on IBM Power 3 SP (1M hours)
§ Access to the Alvarez cluster.
§ CVS
§ HPSS
§ Project web site
§ User Services support

q ORNL
§ Time allocation on IBM Power 4 SP (1.5M hours)

q Other infrastructure
§ UCLA Parallel PIC Framework (Viktor Decyk)
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Young ResearchersYoung Researchers

q LBNL …
§ Parry Husbands, staff – TOPS, SAPP (eigensolvers)
§ Chao Yang, staff – TOPS, SAPP (eigensolvers)
§ Andreas Adelmann, postdoc – SAPP (beam dynamics)
§ Laura Grigori, postdoc – TOPS (sparse matrix computation)
§ Ali Pinar, postdoc – TOPS (load balancing)
§ Weiguo Gao – TOPS, SAPP (eigensolvers, preconditioning)
§ Keita Teranishi, graduate student – TOPS (sparse matrices)
§ Summer undergraduate students – TOPS (sparse matrix tools)

q UC Davis (K. Ma) …
§ Graduate tudents – SAPP (visualization)

q Stanford University (G. Golub) …
§ Graduate students working – SAPP (numerical linear algebra)


